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subject to the boundary conditions: 

D(Y, 0) = 0 - Yi < Y < Y, 

r’r 
- =0: (u’+y2)+=R- y>O. 
&I 

13A) 

Letting z = Y + iy, and introducing coaxal coordinates 

we find that 

(4A) Solution of this problem can be effected numerically. or 

analytically in terms of a complete set of orthogonal 
functions. 
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IN THE past fifteen years considerable progress has been 

recorded by researchers concerning the dispersion of matter 

in turbulent shear flows. The practical applications of this 

literature to flow metering in pipes and natural streams, as 

well as pollution control studies and other engineering 

problems, are numerous. The formulation of the problem 

involves seeking solutions for specific initial conditions of 

the transient diffusion equation. The analyses applied to 

fully developed channel and pipe Rows are based on eddy 

diffusivity approximations using Reynolds’ analogy and 

semi-empirical solutions for the mean flow held. 

The purpose of this paper is to present a general method 

for finding solutions to the longitudinal dispersion problem. 

A specific example is presented in detail where both experi- 

mental data and an earlier analysis are available for com- 

parison. It is concluded that the analytical methodology 

proposed here not only has a suitable mathematical formal- 
ism, but that it also provides a tinite algorithm for numerical 

solution with advantages over previous methods. 

PRESENT ANALYSIS 

Aris [i] published a method for solving longitudinal 

dispersion problems which has been successfully applied 

by several authors in the last three years. Consider a fully 
developed channel flow of an incompressible fluid where the 

time averaged concentration C of the dispersing matter may 

be described by 

where t is the dispersion time, X, y, 2, are the space coordinates 

in the longitudinal, vertical and lateral directions, respec- 

tively. and E is the eddy diffusivity for mass transfer. 

To facilitate comparisons, the notation and dimensionless 

parameters introduced by Aris [l] will be incorporated into 

equation (I). Following Aris. define the local velocity as 

WY, 4 = I7 [l + x(y, z)] (2) 

where .y(y. z) is a function which describes the variation of 

velocity in the cross section, and the local eddy diffusivity 

as 

E, = Ey zzz E; - D$(y, -_) (3) 

where D is the average value of the eddy diffusivity in the 

cross section and r&y, z) is a function describing the distribu- 

tion of eddy diffusivity.* Using these definitions, equation 

(1) becomes 

* The present analysis assumes isotropic turbulence 
structure, but the extension to non-isotropic turbulent flows 
could be achieved by redefining local eddy diffusivities. 
namely E, = D,$,(Y.z). ey = D,&,,fy,z) and 8s = DZhI/Z(y,~). 
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with introduction of the dimensionless parameters 

finite differences for the derivatives with respect to the 
independent q-variable. This approach replaces equation 
(9) by a system of differential equations with discontinuous 

(4) coefficients and with only one independent variable f. 
The finite difference quantities in the n-direction are 

84, 1 

where y, is the depth of uniform Sow in an open chatmel, 
equation (4) becomes 

The governihg equation (6) is an Eulerian description of 
motion and the dispersion is occurring in a frame of reference 
which is moving with mean velocity. The initial and the 
boundary conditions for equation (6) are: (1) at r = 0, 
C(<, 9. c, O), the initial spatial distribution of dispersant that 
is contained in a finite length of channel, is known. The 
reflection boundary conditions can be stated as (2) @X/&t 
= 0 at all boundaries including the water surface, where n 
is the normal to the boundary. That is, no diffusion across the 
boundaries is permitted. Also the total amount of dispersant 
in the system remains constant or 

(34 II_; C(5, tl, i, 4 d< ds di = constant, 
A 10 

where A is the cross-sectional area of the channel. We can 
separate the independent variable z from equation (6) by 
letting 

C(& % T) = ti(5, tl) T (7) (7) 

and restricting the analysis to two-dimensional flow by 
setting a/al term equal to zero. The resulting equations are 

ST 
- + Ik2T=0 
dr 

(8) 

and 

Where the A are the eigenvalues. Equation (8) has an exact 
solution of the type 

TA = H,le-A’i, (10) 

On the other hand, equation (9) can not be solved exactly. 
Since a general solution is being sought at a certain channel 
depth with I and r as the independent variables, the resulting 
differential equation (9) can be replaced by a system of 
differential equations with a smaller number of independent 
variables. So we employ the line method, discussed in detail 
by Mikhlin [2], which lies midway between analytica) and 
grid methods. The basis of the method is substitution of 

&- r(== 

=jpk+,ce, - (bk(O1 

and 

8% 
===A,,+ A# - 2#&) + #?-&)I. a92 "=* h2 

(111 

With the aid of equations (11) equation (9) becomes the 
following system of differential equations: 

where k = 1.2, . . , n. The boundary conditions become 
&(O = d,(T) and 

&I+ l(r) = dtK). (13) 

The system of equations (12) and (13) contain n equations 
and n unknowns 4t(c), dam,. . , (p.(l). The coupled system 
of equations (12) and (13) can be uncoupled and written as 

(S,r”+’ + g8 + . . . + 9n+lr + sn+3#*=0 (14) 

where r = d/dt and the coefftcients. g’s, are functions of 

We shall now consider the above differential system where 
the coeflicients in the equation (14) depend upon the eigen- 
values r2’ to be solutions to a positive definite eigenvalue 
problem. Since the concentration profiles are bounded, and 
differentiable, the assumptions of real and positive eigen- 
values are valid. Sangren [33 gives a discussion of this issue. 
Since C,i(t. 5) is bounded, only the positive eigenvalues, 
,I2 > 0. contribute to the solution of equation (14). Assuming 
that the polynomial in equation (14) has n + 1 imaginary 
roots of the type 

‘n=Pn + i% 

the solution for (pk(5) is 

n+,,2 
#k(5) = C ep’( W,,, cos qi5 + H,,, sin 483 

i=, 

(13 

(16) 

where pi and qi are functions of i which can be represented as 
m 

U2f pi= Caljaj+- 

j=O a j 
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(17) 

The general solution for C& 5) is then 

n+ I,* 

Cx,(.r, 5) = C exp 
i= 1 

(18) 

We can superimpose solutions for all the values of L, since 

they are real and positive. Thus 

(19) 

The integrals in equation (19) can be represented by 

Hermite polynomials which are orthogonal polynomials 

associated with a normal distribution. Equation (19) can 

be expanded and rearranged so that the integrals are of the 

following form : 

He,(t) = ec’2”f’ Fe-“P [cos 251 cos (nn/2) + 
Jn 0 

+ sin 251 sin (nn/2)] dl. (20) 

This form of the Hermite polynomial integrals can be seen 

even in equation (19) where the exponential, the sine, and 

the cosine functions appear naturally as a result of the line 

integral technique. Equation (19) can be expanded and 

written as 

x{A,cos(212~)[1 - (1/2!)(b,,5 + b,,1*5 + .)’ 

+(1/4!)(b,,t + b,&‘t + . ..)“...I + B,,sin(2125) 

x [b,,t + bl,l*t + .) - (1/3!)(b,,< + b,2Lz< 

+...,s]}dL (21) 

The contribution from each solution is superimposed, 

namely 

n+ L/Z 
,c, Ai, z A(i) = A, + A,I + A,r1* + , 

to give the following form of equation (26) 

a:,i2<’ 
+- 

2! 
+ 

> 
{(A, + A,1 + A$.* + .) 

x [l - (1/2!)(b,,( + b,&‘~ + .)’ 

+ (1/4!)(b,,[ + b,,rl*t + ..)4.. .] cos(21<) 

+ (B, + B,1 + B&’ + .) [(blot + b,,1’~ + .) 

- (1/3!)(b,,5 + b,,1’5 + ...)3 + . ..I 

sin (2@)} dl. (22) 

Each term of the above integrals contributes to a certain 

order of Hermite polynomials. For example, the fourth 

order Hermite polynomial is obtained from the following 
terms : 

+ Piy - 12’o(2 + + Pp - /Pp + ,?y 

- rl”‘(“ + ] cos (Uy) dl. 

These integrals in equation (22) can be written in the form 

of a series for the kth strip of the channel, 

C,(r, 5) = c,v@. 0 
I 
1 + : Bjz)He# . 

I 
(23) 

j=9 

or as the strip size h -+ 0, equation (23) is written as 

1 
C&, tl, 5) = -- exp 

uJ27c 

and u2 is the variance of the longitudinal concentration 

distribution. This representation, equation (24), is not a 

unique, but a convenient one. 

Each term of the Hermite polynomial series in equation 

(23) applies corrections to the long-term asymptotic Gaus- 

sian solution. &(+Yes(5) contributes corrections due to the 

skewness factor, and B4(5)He4(5) contributes corrections 

due to the flatness factor, etc. The time dependent series 

COeffkkntS, &(T), p4(T), , p.(T) can be evaluated by 

employing Aris moment solutions. Consider first a Hermite 

polynomial series up to the fourth moment. 

1 
C(T, t) = ~ 

CT J2n 
exp 

+ 84wfe4m (25) 

where He,(t) = 8t3 - 125 and He,(t) = 165“ - 485’ + 12. 

The third and the fourth moments can be calculated from 

equation (25). 

C,(r)= ; t3c(r, 5) d5 (26) 
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and Similarly the result of equation (27) gives p4(7), the flatness 

C,(7) = 7 t4C(7, 4 dt. 

contributor. 

-m 
(27) &(7) = [C,(r) - 304]/[u4(1680 u4 - 720 0’ + 36)] (29) 

The result of equation (26) gives p3(7), the skewness con- The behaviors of /Is(r) and j34(7) as functions of time are 

tributor. shown in Fig. 1. Notice that the contribution from each 
series term approaches zero as 7 --* co; this validates the 

j3J7) = C,(7)/[u4(120u2 - 36)]. extraction of the normal distribution from equation (23). 
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FIG. la. Coefficient of the skewness factor in Hermite polynomialseries. 
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FIG. lb. Coefficient of the flatness factor in Hennite polynomialseries. 
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Equation (23) is a simple series representation for the 
longitudinal concentration distribution where each term 
represents a correction to the normal distribution due to 
skewness, fIatness, etc. There are two practical criteria that 
must be satistied in a computation of this type. The computed 
Hermite polynomial coefficients, /j’;s, should decrease 
fairly rapidly in magnitude in time and successive approxi- 
mations should appear to converge to a common value. 
Inspection of Fig. 1 shows that the first criterion is satisfied. 
Inspections of Table 1 and Fig. 2 show that the second 
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FIG. 2. Corrections due to the higher terms in Hermite 
~l~orn~al series. 

criterion is satisfied. Extensive comparisons with the experi- 
mental data of Sayre [4, 51 show in Fig 3 that only moments 
up to the flatness factor are required for accurate predictions. 
That is, only three terms of the series of equation (23) are 
needed. 

The functional form of the concentration distribution 
proposed here provides a convenient computation method 
which should assist in further application of the Aris moment 
method in the solution of the diffusion equation 
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FIG. 3a. Comparison of experimental and theoretical 
longitudinal concentration curves. 

0 05 

TI 
0.04 

? 
F 0.03 
*- 
i 

: 0.02 

0.01 

0 

Run Lb-D-2 ’ 
X,’ 88.5 ft j 7,=0,50 

-Experiment 

----Hermite polyoo~ 

---Pearson I 
km--- +~___-. 

Sayre (1966) experimer 

FIG. 3b. Comparison of experimental and theoretical 
longitudinal concentration curves. 



SHORTER COMMUNICATIONS 2151 

70 00 90 loo I IO 120 130 140 60 70 60 90 too I IO I20 130 

d s t. 5 

FIG. 3c. Comparison of experimental and theoretical FIG. 3d. Comparison of experimental and theoretical 
longitudinal concentration curves. longitudinal concentration curves. 

Table 1. Prediction of Sayre’s(l0) LO-D-2 experiment at x = 328ft with the present HermitepoIynimialseries 

Normal distribution Skewness Flatness 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
41 
48 
49 
50 

000432 000151 OQO119 -000280 - OGOO32 
OQO955 000566 000527 - DO0389 -0WQ39 
001787 001349 001311 -000438 -0W338 
@02895 DO2487 002456 -0W408 -0QOO31 
004178 003863 003843 -0Go315 - 000020 
005482 005283 005273 -0GO199 -000010 
@06636 @06537 DO6534 -000099 -000003 
007509 @07475 007475 -0WO34 -OWOOO 
008015 008010 008010 -000005 -@OOOOO 
008148 0.08149 0.08149 OQOOO1 -0OOOOO 
007938 007937 007937 -OWOO1 -@WOO0 
007446 007451 007451 Ooooo5 -OWOOO 
006766 @06791 006791 OXlOO -0OOOOO 
0.05975 0.06033 0.06031 000058 -0WOO2 
DO5144 005244 005239 ~00100 -000005 
004332 0.04475 OQ4468 000143 -OGxrO7 
003576 003758 CO3748 DO0182 -000010 
@02901 003113 003099 WOO212 -000014 
002315 0.02546 002529 0.00231 -000017 
001821 VO2059 0.02040 000238 -0WO19 
001415 001650 001630 OX0235 - 000020 
001085 001309 001289 000224 - WOO20 
a00823 @01030 OOlOlO 000207 - OWO20 
OQO620 @00805 000786 003185 -DO0019 
000461 000623 000606 PC0162 -0ooo17 
000340 WOO479 @00464 000139 -00X15 
Of!0250 000367 O-00353 OQO117 -@00014 
0.00182 000279 @00267 003097 -0WO12 
COO132 000210 000200 @00078 -000010 
OQOO95 DO0158 @00150 OWO63 -003008 
@00068 000118 @OOlll 000050 -OQOOO7 
OWO48 000088 000082 00@040 -000006 

The contributions from higher terms of the Hermitynomials get less as shown in Fig. 2. 
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CP 
Fl> 
F2, 
G*, 
Ja, 
k 
Kn 
p*, 
p,, 
P”. 
Pe. 
Pr, 
Nu, 
4, 
40, 

R, 

Ro> 

Rf, 

R 

r. 

T*, 

T w1 
T 
A?, 

t, 

u, 

a, 

NOMENCLATURE 

specific heat : 
F1(#), function of #, equation (20) : 
F&), function of S’,, equation (24): 
ratio, liquid to vapor density, p,./p,*; 
Jacob number (pC,AT/lp,); 
thermal conductivity : 
velocity factor, modified potential flow ; 
total system pressure : 
partial pressure, non condensible : 
partial pressure vapor : 
P&cl&t number (U,ZR/a); 
Prandtl number (&,/k); 
Nusselt number (h2R/k): 
heat flux [Btu/hf?] : 
heat flux, potential flow [Btuihft’] : 
radius of bubble : 
initial radius of bubble: 

final radius of bubble: 

specific gas constant: 
radial coordinate : 
saturation temperature corresponding to P* : 
bubble wall temperature : 
approach temperature, surrounding liquid : 
temperature difference, T* - T, : 
time. 

velocity of rise : 
thermal diffusivity : 
dimensionless radius, R/R,, : 
final dimensionless radius, R,/R, ; 

2, latent heat; 

P. density, continuous phase: 

p. density, condensate : 
p., density, vapor: 

T, dimensionless time, Fourier number (=at/Ri); 
2, dimensionless time for collapsing bubble (JaPe%). 

Subscripts 

f> final : 
0, initial : 
w, at the wall. 

Superscripts 

H, homogeneous distribution : 
p, parabolic distribution. 

INTRODUCTION 

WITTKE and Chao [l] and Isenberg and Sideman [2] pre- 
sented numerical solutions for unsteady state bubble 

collapse: the former for a single component (steam-water) 

system and the latter for a two component (pentane-water) 

system. These systems differ since the condensate in a single 
component bubble merges with the surrounding liquid, 

while the condensate in the two component system remains 

within the confines of the bubble walls. More recently, 

Sideman et al. [3] presented an approximate, quasi-steady 

state, analytical solution for bubble collapse in two- 

component, 3-phase systems. The solution is general, con- 

veniently reducing to a solution for a single component 

* Presently: Visiting Professor, Department of Chemical 
Engineering, University of Houston, Houston, Texas 77004. 


